کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
416434 681370 2012 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Initializing the EM algorithm in Gaussian mixture models with an unknown number of components
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Initializing the EM algorithm in Gaussian mixture models with an unknown number of components
چکیده انگلیسی

An approach is proposed for initializing the expectation–maximization (EM) algorithm in multivariate Gaussian mixture models with an unknown number of components. As the EM algorithm is often sensitive to the choice of the initial parameter vector, efficient initialization is an important preliminary process for the future convergence of the algorithm to the best local maximum of the likelihood function. We propose a strategy initializing mean vectors by choosing points with higher concentrations of neighbors and using a truncated normal distribution for the preliminary estimation of dispersion matrices. The suggested approach is illustrated on examples and compared with several other initialization methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 56, Issue 6, June 2012, Pages 1381–1395
نویسندگان
, ,