کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
416519 681378 2009 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bayesian model checking for multivariate outcome data
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Bayesian model checking for multivariate outcome data
چکیده انگلیسی

Bayesian models are increasingly used to analyze complex multivariate outcome data. However, diagnostics for such models have not been well developed. We present a diagnostic method of evaluating the fit of Bayesian models for multivariate data based on posterior predictive model checking (PPMC), a technique in which observed data are compared to replicated data generated from model predictions. Most previous work on PPMC has focused on the use of test quantities that are scalar summaries of the data and parameters. However, scalar summaries are unlikely to capture the rich features of multivariate data. We introduce the use of dissimilarity measures for checking Bayesian models for multivariate outcome data. This method has the advantage of checking the fit of the model to the complete data vectors or vector summaries with reduced dimension, providing a comprehensive picture of model fit. An application with longitudinal binary data illustrates the methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 53, Issue 11, 1 September 2009, Pages 3765–3772
نویسندگان
, ,