کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
416538 681383 2009 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Sharp quadratic majorization in one dimension
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Sharp quadratic majorization in one dimension
چکیده انگلیسی

Majorization methods solve minimization problems by replacing a complicated problem by a sequence of simpler problems. Solving the sequence of simple optimization problems guarantees convergence to a solution of the complicated original problem. Convergence is guaranteed by requiring that the approximating functions majorize the original function at the current solution. The leading examples of majorization are the EM algorithm and the SMACOF algorithm used in Multidimensional Scaling. The simplest possible majorizing subproblems are quadratic, because minimizing a quadratic is easy to do. In this paper quadratic majorizations for real-valued functions of a real variable are analyzed, and the concept of sharp majorization is introduced and studied. Applications to logit, probit, and robust loss functions are discussed.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 53, Issue 7, 15 May 2009, Pages 2471–2484
نویسندگان
, ,