کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
416640 681389 2014 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Eliminating bias due to censoring in Kendall’s tau estimators for quasi-independence of truncation and failure
ترجمه فارسی عنوان
از بین بردن تعصب به دلیل سانسور کردن در برآوردگرهای تاد کنالا برای تقریبا مستقل از قطع و شکست
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
چکیده انگلیسی

While the currently available estimators for the conditional Kendall’s tau measure of association between truncation and failure are valid for testing the null hypothesis of quasi-independence, they are biased when the null does not hold. This is because they converge to quantities that depend on the censoring distribution. The magnitude of the bias relative to the theoretical Kendall’s tau measure of association between truncation and failure due to censoring has not been studied, and so its importance in real problems is not known. We quantify this bias in order to assess the practical usefulness of the estimators. Furthermore, we propose inverse probability weighted versions of the conditional Kendall’s tau estimators to remove the effects of censoring and provide asymptotic results for the estimators. In simulations, we demonstrate the decrease in bias achieved by these inverse probability weighted estimators. We apply the estimators to the Channing House data set and an AIDS incubation data set.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 73, May 2014, Pages 16–26
نویسندگان
, ,