کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
416846 681408 2006 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Data analysis using regression models with missing observations and long-memory: an application study
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Data analysis using regression models with missing observations and long-memory: an application study
چکیده انگلیسی

The objective of this work is to propose a statistical methodology to handle regression data exhibiting long memory errors and missing values. This type of data appears very often in many areas, including hydrology and environmental sciences, among others. A generalized linear model is proposed to deal with this problem and an estimation strategy is developed that combines both classical and Bayesian approaches. The estimation methodology proposed is illustrated with an application to air pollution data which shows the impact of the long memory in the statistical inference and of the missing values on the computations. From a Bayesian standpoint, genuine priors are considered for the parameters of the model which are justified within the context of the air pollution model derivation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 50, Issue 8, 10 April 2006, Pages 2028–2043
نویسندگان
, , ,