کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
416999 681434 2010 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bayesian density estimation and model selection using nonparametric hierarchical mixtures
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Bayesian density estimation and model selection using nonparametric hierarchical mixtures
چکیده انگلیسی

A class of nonparametric hierarchical mixtures is considered for Bayesian density estimation. This class, namely mixtures of parametric densities on the positive reals with a normalized generalized gamma process as mixing measure, is very flexible in the detection of clusters in the data. With an almost sure approximation of the posterior trajectories of the mixing process a Markov chain Monte Carlo algorithm is run to estimate linear and nonlinear functionals of the predictive distributions. The best-fitting mixing measure is found by minimizing a Bayes factor for parametric against nonparametric alternatives. Simulated and historical data illustrate the method, finding a trade-off between the best-fitting model and the correct identification of the number of components in the mixture.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 54, Issue 4, 1 April 2010, Pages 816–832
نویسندگان
, , ,