کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
417013 681434 2010 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A sparse eigen-decomposition estimation in semiparametric regression
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
A sparse eigen-decomposition estimation in semiparametric regression
چکیده انگلیسی

For semiparametric models, one of the key issues is to reduce the predictors’ dimension so that the regression functions can be efficiently estimated based on the low-dimensional projections of the original predictors. Many sufficient dimension reduction methods seek such principal projections by conducting the eigen-decomposition technique on some method-specific candidate matrices. In this paper, we propose a sparse eigen-decomposition strategy by shrinking small sample eigenvalues to zero. Different from existing methods, the new method can simultaneously estimate basis directions and structural dimension of the central (mean) subspace in a data-driven manner. The oracle property of our estimation procedure is also established. Comprehensive simulations and a real data application are reported to illustrate the efficacy of the new proposed method.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 54, Issue 4, 1 April 2010, Pages 976–986
نویسندگان
, , ,