کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
417021 681434 2010 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Dimension reduction using the generalized gradient direction
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Dimension reduction using the generalized gradient direction
چکیده انگلیسی

Sufficient dimension reduction methods, such as the sliced inverse regression one (SIR) and the sliced average variance estimate one (SAVE), usually put restrictions on the regressor: XX being elliptical or normal. We propose a new effective method, called the generalized gradient direction method (GGD), for solving sufficient dimension reduction problems. Compared with SIR, SAVE etc., GGD makes very weak assumptions on XX and performs well with XX being a continuous variable or a numerical discrete variable, while existing methods are all developed with XX being a continuous variable. The computation for GGD is very simple, just like for SIR, SAVE etc. Moreover, GGD proves robust compared with many standard techniques. Simulation results in comparison with results from other methods support the advantages of GGD.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 54, Issue 4, 1 April 2010, Pages 1089–1102
نویسندگان
, ,