کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
417026 681434 2010 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bayesian nonparametric quantile regression using splines
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Bayesian nonparametric quantile regression using splines
چکیده انگلیسی

A new technique based on Bayesian quantile regression that models the dependence of a quantile of one variable on the values of another using a natural cubic spline is presented. Inference is based on the posterior density of the spline and an associated smoothing parameter and is performed by means of a Markov chain Monte Carlo algorithm. Examples of the application of the new technique to two real environmental data sets and to simulated data for which polynomial modelling is inappropriate are given. An aid for making a good choice of proposal density in the Metropolis–Hastings algorithm is discussed. The new nonparametric methodology provides more flexible modelling than the currently used Bayesian parametric quantile regression approach.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 54, Issue 4, 1 April 2010, Pages 1138–1150
نویسندگان
, , , , ,