کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
417037 681439 2010 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Using combinatorial optimization in model-based trimmed clustering with cardinality constraints
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Using combinatorial optimization in model-based trimmed clustering with cardinality constraints
چکیده انگلیسی

Statistical clustering criteria with free scale parameters and unknown cluster sizes are inclined to create small, spurious clusters. To mitigate this tendency a statistical model for cardinality-constrained clustering of data with gross outliers is established, its maximum likelihood and maximum a posteriori   clustering criteria are derived, and their consistency and robustness are analyzed. The criteria lead to constrained optimization problems that can be solved by using iterative, alternating trimming algorithms of kk-means type. Each step in the algorithms requires the solution of a λλ-assignment problem known from combinatorial optimization. The method allows one to estimate the numbers of clusters and outliers. It is illustrated with a synthetic data set and a real one.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 54, Issue 3, 1 March 2010, Pages 637–654
نویسندگان
, ,