کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
417039 | 681439 | 2010 | 20 صفحه PDF | دانلود رایگان |

Data mining is the process of extracting and analysing information from large databases. Graphical models are a suitable framework for probabilistic modelling. A Bayesian Belief Net (BBN) is a probabilistic graphical model, which represents joint distributions in an intuitive and efficient way. It encodes the probability density (or mass) function of a set of variables by specifying a number of conditional independence statements in the form of a directed acyclic graph. Specifying the structure of the model is one of the most important design choices in graphical modelling. Notwithstanding their potential, there are only a limited number of applications of graphical models on very complex and large databases. A method for mining ordinal multivariate data using non-parametric BBNs is presented. The main advantage of this method is that it can handle a large number of continuous variables, without making any assumptions about their marginal distributions, in a very fast manner. Once the BBN is learned from data, it can be further used for prediction. This approach allows for rapid conditionalisation, which is a very important feature of a BBN from a user’s standpoint.
Journal: Computational Statistics & Data Analysis - Volume 54, Issue 3, 1 March 2010, Pages 668–687