کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
417048 681439 2010 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Impact of non-normal random effects on inference by multiple imputation: A simulation assessment
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Impact of non-normal random effects on inference by multiple imputation: A simulation assessment
چکیده انگلیسی

Multivariate extensions of well-known linear mixed-effects models have been increasingly utilized in inference by multiple imputation in the analysis of multilevel incomplete data. The normality assumption for the underlying error terms and random effects plays a crucial role in simulating the posterior predictive distribution from which the multiple imputations are drawn. The plausibility of this normality assumption on the subject-specific random effects is assessed. Specifically, the performance of multiple imputation created under a multivariate linear mixed-effects model is investigated on a diverse set of incomplete data sets simulated under varying distributional characteristics. Under moderate amounts of missing data, the simulation study confirms that the underlying model leads to a well-calibrated procedure with negligible biases and actual coverage rates close to nominal rates in estimates of the regression coefficients. Estimation quality of the random-effect variance and association measures, however, are negatively affected from both the misspecification of the random-effect distribution and number of incompletely-observed variables. Some of the adverse impacts include lower coverage rates and increased biases.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 54, Issue 3, 1 March 2010, Pages 790–801
نویسندگان
, ,