کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
417082 681449 2010 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Identifying financial time series with similar dynamic conditional correlation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Identifying financial time series with similar dynamic conditional correlation
چکیده انگلیسی

One of the main problems in modelling multivariate conditional covariance time series is the parameterization of the correlation structure. If no constraints are imposed, it implies a large number of unknown coefficients. The most popular models propose parsimonious representations, imposing similar correlation structures to all the series or to groups of time series, but the choice of these groups is quite subjective. A statistical approach is proposed to detect groups of homogeneous time series in terms of correlation dynamics for one of the widely used models: the Dynamic Conditional Correlation model. The approach is based on a clustering algorithm, which uses the idea of distance between dynamic conditional correlations, and the classical Wald test, to compare the coefficients of two groups of dynamic conditional correlations. The proposed approach is evaluated in terms of simulation experiments and applied to a set of financial time series.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 54, Issue 1, 1 January 2010, Pages 1–15
نویسندگان
,