کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
417097 681449 2010 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Approximate conditional inference in mixed-effects models with binary data
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Approximate conditional inference in mixed-effects models with binary data
چکیده انگلیسی

The conditional likelihood approach is a sensible choice for a hierarchical logistic regression model or other generalized regression models with binary data. However, its heavy computational burden limits its use, especially for the related mixed-effects model. A modified profile likelihood is used as an accurate approximation to conditional likelihood, and then the use of two methods for inferences for the hierarchical generalized regression models with mixed effects is proposed. One is based on a hierarchical likelihood and Laplace approximation method, and the other is based on a Markov chain Monte Carlo EM algorithm. The methods are applied to a meta-analysis model for trend estimation and the model for multi-arm trials. A simulation study is conducted to illustrate the performance of the proposed methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 54, Issue 1, 1 January 2010, Pages 173–184
نویسندگان
, , ,