کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
417260 681474 2008 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Stepwise feature selection using generalized logistic loss
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Stepwise feature selection using generalized logistic loss
چکیده انگلیسی

Microarray experiments have raised challenging questions such as how to make an accurate identification of a set of marker genes responsible for various cancers. In statistics, this specific task can be posed as the feature selection problem. Since a support vector machine can deal with a vast number of features, it has gained wide spread use in microarray data analysis. We propose a stepwise feature selection using the generalized logistic loss that is a smooth approximation of the usual hinge loss. We compare the proposed method with the support vector machine with recursive feature elimination for both real and simulated datasets. It is illustrated that the proposed method can improve the quality of feature selection through standardization while the method retains similar predictive performance compared with the recursive feature elimination.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 52, Issue 7, 15 March 2008, Pages 3709–3718
نویسندگان
, , , ,