کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
417342 681489 2007 31 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Exploring the state sequence space for hidden Markov and semi-Markov chains
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Exploring the state sequence space for hidden Markov and semi-Markov chains
چکیده انگلیسی

The knowledge of the state sequences that explain a given observed sequence for a known hidden Markovian model is the basis of various methods that may be divided into three categories: (i) enumeration of state sequences; (ii) summary of the possible state sequences in state profiles; (iii) computation of a global measure of the state sequence uncertainty. Concerning the first category, the generalized Viterbi algorithm for computing the top L most probable state sequences and the forward-backward algorithm for sampling state sequences are derived for hidden semi-Markov chains and hidden hybrid models combining Markovian and semi-Markovian states. Concerning the second category, a new type of state (and state change) profiles is proposed. The Viterbi forward–backward algorithm for computing these state profiles is derived for hidden semi-Markov chains and hidden hybrid models combining Markovian and semi-Markovian states. Concerning the third category, an algorithm for computing the entropy of the state sequence that explains an observed sequence is proposed. The complementarity and properties of these methods for exploring the state sequence space (including the classical state profiles computed by the forward–backward algorithm) are investigated and illustrated with examples.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 51, Issue 5, 1 February 2007, Pages 2379–2409
نویسندگان
,