کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
417343 681489 2007 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A computationally efficient method for nonlinear mixed-effects models with nonignorable missing data in time-varying covariates
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
A computationally efficient method for nonlinear mixed-effects models with nonignorable missing data in time-varying covariates
چکیده انگلیسی

Nonlinear mixed-effects (NLME) models are widely used for longitudinal data analyses. Time-dependent covariates are often introduced to partially explain inter-individual variation. These covariates often have missing data, and the missingness may be nonignorable. Likelihood inference for NLME models with nonignorable missing data in time-varying covariates can be computationally very intensive and may even offer computational difficulties such as nonconvergence. We propose a computationally very efficient method for approximate likelihood inference. The method is illustrated using a real data example.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 51, Issue 5, 1 February 2007, Pages 2410–2419
نویسندگان
,