کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
417343 | 681489 | 2007 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A computationally efficient method for nonlinear mixed-effects models with nonignorable missing data in time-varying covariates
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Nonlinear mixed-effects (NLME) models are widely used for longitudinal data analyses. Time-dependent covariates are often introduced to partially explain inter-individual variation. These covariates often have missing data, and the missingness may be nonignorable. Likelihood inference for NLME models with nonignorable missing data in time-varying covariates can be computationally very intensive and may even offer computational difficulties such as nonconvergence. We propose a computationally very efficient method for approximate likelihood inference. The method is illustrated using a real data example.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 51, Issue 5, 1 February 2007, Pages 2410–2419
Journal: Computational Statistics & Data Analysis - Volume 51, Issue 5, 1 February 2007, Pages 2410–2419
نویسندگان
Lang Wu,