کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
417346 681489 2007 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Analysing the performance of bootstrap neural tests for conditional heteroskedasticity in ARCH-M models
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Analysing the performance of bootstrap neural tests for conditional heteroskedasticity in ARCH-M models
چکیده انگلیسی

The robustness against strongly non-linear forms for the conditional variance of tests for detecting conditional heteroskedasticity using both artificial neural network techniques and bootstrap methods combined, is analysed in the context of ARCH-M models. The size and the power properties in small samples of these tests are examined by using out Monte-Carlo experiments with various standard and non-standard models of conditional heteroskedasticity. The P value functions are explored in order to select particularly problematic cases. Graphical presentations, based on the principle of size correction, are used for presenting the true power of the tests, rather than a spurious nominal power as it is usually made in the literature. In addition, graphics linking the process dynamics with the heteroskedasticity forms are shown for analysing in which circumstances the neural networks are effective.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 51, Issue 5, 1 February 2007, Pages 2442–2460
نویسندگان
, ,