کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
417445 | 681519 | 2013 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Two algorithms for fitting constrained marginal models
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The two main algorithms that have been considered for fitting constrained marginal models to discrete data, one based on Lagrange multipliers and the other on a regression model, are studied in detail. It is shown that the updates produced by the two methods are identical, but that the Lagrangian method is more efficient in the case of identically distributed observations. A generalization is given of the regression algorithm for modelling the effect of exogenous individual-level covariates, a context in which the use of the Lagrangian algorithm would be infeasible for even moderate sample sizes. An extension of the method to likelihood-based estimation under L1L1-penalties is also considered.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 66, October 2013, Pages 1–7
Journal: Computational Statistics & Data Analysis - Volume 66, October 2013, Pages 1–7
نویسندگان
R.J. Evans, A. Forcina,