کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
417448 681519 2013 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Logistic regression with outcome and covariates missing separately or simultaneously
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Logistic regression with outcome and covariates missing separately or simultaneously
چکیده انگلیسی

Estimation methods are proposed for fitting logistic regression in which outcome and covariate variables are missing separately or simultaneously. One of the two proposed estimators is an extension of the validation likelihood estimator of Breslow and Cain (1988). The other is a joint conditional likelihood estimator that uses both validation and non-validation data. Large sample properties of the proposed estimators are studied under certain regularity conditions. Simulation results show that the joint conditional likelihood estimator is more efficient than the validation likelihood estimator, weighted estimator, and complete-case estimator. The practical use of the proposed methods is illustrated with data from a cable TV survey study in Taiwan.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 66, October 2013, Pages 32–54
نویسندگان
, , ,