کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
417617 681544 2012 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On estimation of a heteroscedastic measurement error model under heavy-tailed distributions
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
On estimation of a heteroscedastic measurement error model under heavy-tailed distributions
چکیده انگلیسی

It is common in epidemiology and other fields that the analyzing data is collected with error-prone observations and the variances of the measurement errors change across observations. Heteroscedastic measurement error (HME) models have been developed for such data. This paper extends the structural HME model to situations in which the observations jointly follow scale mixtures of normal (SMN) distribution. We develop the EM algorithm to compute the maximum likelihood estimates for the model with and without equation error respectively, and derive closed forms of asymptotic variances. We also conduct simulations to verify the effective of the EM estimates and confirm their robust behaviors based on heavy-tailed SMN distributions. A practical application is reported for the data from the WHO MONICA Project on cardiovascular disease.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 56, Issue 2, 1 February 2012, Pages 438–448
نویسندگان
, , ,