کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
417625 681549 2011 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Sharpening Wald-type inference in robust regression for small samples
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Sharpening Wald-type inference in robust regression for small samples
چکیده انگلیسی

The datasets used in statistical analyses are often small in the sense that the number of observations nn is less than 5 times the number of parameters pp to be estimated. In contrast, methods of robust regression are usually optimized in terms of asymptotics with an emphasis on efficiency and maximal bias of estimated coefficients. Inference, i.e., determination of confidence and prediction intervals, is proposed as complementary criteria. An analysis of MM-estimators leads to the development of a new scale estimate, the Design Adaptive Scale Estimate, and to an extension of the MM-estimate, the SMDM-estimate  , as well as a suitable ψψ-function. A simulation study shows and a real data example illustrates that the SMDM-estimate has better performance for small n/pn/p and that the use the new scale estimate and of a slowly redescending ψψ-function is crucial for adequate inference.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 55, Issue 8, 1 August 2011, Pages 2504–2515
نویسندگان
, ,