کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
417658 681560 2011 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Acceleration of the alternating least squares algorithm for principal components analysis
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Acceleration of the alternating least squares algorithm for principal components analysis
چکیده انگلیسی

Principal components analysis (PCA) is a popular descriptive multivariate method for handling quantitative data and it can be extended to deal with qualitative data and mixed measurement level data. The existing algorithms for extended PCA are PRINCIPALS of Young et al. (1978) and PRINCALS of Gifi (1989) in which the alternating least squares algorithm is utilized. These algorithms based on the least squares estimation may require many iterations in their application to very large data sets and variable selection problems and may take a long time to converge. In this paper, we derive a new iterative algorithm for accelerating the convergence of PRINCIPALS and PRINCALS by using the vector εε algorithm of Wynn (1962). The proposed acceleration algorithm speeds up the convergence of the sequence of the parameter estimates obtained from PRINCIPALS or PRINCALS. Numerical experiments illustrate the potential of the proposed acceleration algorithm.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 55, Issue 1, 1 January 2011, Pages 143–153
نویسندگان
, , , ,