کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
417683 681560 2011 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Generalized weighted likelihood density estimators with application to finite mixture of exponential family distributions
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Generalized weighted likelihood density estimators with application to finite mixture of exponential family distributions
چکیده انگلیسی

The family of weighted likelihood estimators largely overlaps with minimum divergence estimators. They are robust to data contaminations compared to MLE. We define the class of generalized weighted likelihood estimators (GWLE), provide its influence function and discuss the efficiency requirements. We introduce a new truncated cubic-inverse weight, which is both first and second order efficient and more robust than previously reported weights. We also discuss new ways of selecting the smoothing bandwidth and weighted starting values for the iterative algorithm. The advantage of the truncated cubic-inverse weight is illustrated in a simulation study of three-component normal mixtures model with large overlaps and heavy contaminations. A real data example is also provided.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 55, Issue 1, 1 January 2011, Pages 457–465
نویسندگان
, , ,