کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
417712 681560 2011 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Supervised multidimensional scaling for visualization, classification, and bipartite ranking
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Supervised multidimensional scaling for visualization, classification, and bipartite ranking
چکیده انگلیسی

Least squares multidimensional scaling   (MDS) is a classical method for representing a n×nn×n dissimilarity matrix D. One seeks a set of configuration points z1,…,zn∈RS such that D is well approximated by the Euclidean distances between the configuration points: Dij≈‖zi−zj‖2. Suppose that in addition to D, a vector of associated binary class labels y∈{1,2}n corresponding to the nn observations is available. We propose an extension to MDS that incorporates this outcome vector. Our proposal, supervised multidimensional scaling   (SMDS), seeks a set of configuration points z1,…,zn∈RS such that Dij≈‖zi−zj‖2, and such that zis>zjszis>zjs for s=1,…,Ss=1,…,S tends to occur when yi>yjyi>yj. This results in a new way to visualize the observations. In addition, we show that SMDS leads to a method for the classification of test observations, which can also be interpreted as a solution to the bipartite ranking problem. This method is explored in a simulation study, as well as on a prostate cancer gene expression data set and on a handwritten digits data set.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 55, Issue 1, 1 January 2011, Pages 789–801
نویسندگان
, ,