کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
417745 | 681565 | 2010 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Bayesian inference with stochastic volatility models using continuous superpositions of non-Gaussian Ornstein–Uhlenbeck processes
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Continuous superpositions of Ornstein–Uhlenbeck processes are proposed as a model for asset return volatility. An interesting class of continuous superpositions is defined by a Gamma mixing distribution which can define long memory processes. In contrast, previously studied discrete superpositions cannot generate this behaviour. Efficient Markov chain Monte Carlo methods for Bayesian inference are developed which allow the estimation of such models with leverage effects. The continuous superposition model is applied to both stock index and exchange rate data. The continuous superposition model is compared with a two-component superposition on the daily Standard and Poor’s 500 index from 1980 to 2000.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 54, Issue 11, 1 November 2010, Pages 2594–2608
Journal: Computational Statistics & Data Analysis - Volume 54, Issue 11, 1 November 2010, Pages 2594–2608
نویسندگان
J.E. Griffin, M.F.J. Steel,