کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
417747 681565 2010 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Real time detection of structural breaks in GARCH models
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Real time detection of structural breaks in GARCH models
چکیده انگلیسی

A sequential Monte Carlo method for estimating GARCH models subject to an unknown number of structural breaks is proposed. Particle filtering techniques allow for fast and efficient updates of posterior quantities and forecasts in real time. The method conveniently deals with the path dependence problem that arises in these types of models. The performance of the method is shown to work well using simulated data. Applied to daily NASDAQ returns, the evidence favors a partial structural break specification in which only the intercept of the conditional variance equation has breaks compared to the full structural break specification in which all parameters are subject to change. The empirical application underscores the importance of model assumptions when investigating breaks. A model with normal return innovations result in strong evidence of breaks; while more flexible return distributions such as tt-innovations or a GARCH-jump mixture model still favor breaks but indicate much more uncertainty regarding the time and impact of them.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 54, Issue 11, 1 November 2010, Pages 2628–2640
نویسندگان
, ,