کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
417753 681565 2010 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Forecasting electricity demand in Japan: A Bayesian spatial autoregressive ARMA approach
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Forecasting electricity demand in Japan: A Bayesian spatial autoregressive ARMA approach
چکیده انگلیسی

Regional electricity demand in Japan and spatial interaction among the regions using a Bayesian approach were examined. A spatial autoregressive (SAR) ARMA model was proposed to consider the features of electricity demand in Japan and a strategy of Markov chain Monte Carlo (MCMC) methods was constructed to estimate the parameters of the model. From empirical results, the spatial autoregressive ARMA (1, 1) model was selected, and it was found that spatial interaction plays an important role in electricity demand in Japan. Moreover, log predictive density showed that this SAR-ARMA model performs better than a univariate ARMA model. It was confirmed that the space–time model improves the performance of forecasting future electricity demand in Japan.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 54, Issue 11, 1 November 2010, Pages 2721–2735
نویسندگان
, , ,