کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
417753 | 681565 | 2010 | 15 صفحه PDF | دانلود رایگان |

Regional electricity demand in Japan and spatial interaction among the regions using a Bayesian approach were examined. A spatial autoregressive (SAR) ARMA model was proposed to consider the features of electricity demand in Japan and a strategy of Markov chain Monte Carlo (MCMC) methods was constructed to estimate the parameters of the model. From empirical results, the spatial autoregressive ARMA (1, 1) model was selected, and it was found that spatial interaction plays an important role in electricity demand in Japan. Moreover, log predictive density showed that this SAR-ARMA model performs better than a univariate ARMA model. It was confirmed that the space–time model improves the performance of forecasting future electricity demand in Japan.
Journal: Computational Statistics & Data Analysis - Volume 54, Issue 11, 1 November 2010, Pages 2721–2735