کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
417760 681565 2010 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Efficient parallelisation of Metropolis–Hastings algorithms using a prefetching approach
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Efficient parallelisation of Metropolis–Hastings algorithms using a prefetching approach
چکیده انگلیسی

Prefetching is a simple and general method for single-chain parallelisation of the Metropolis–Hastings algorithm based on the idea of evaluating the posterior in parallel and ahead of time. Improved Metropolis–Hastings prefetching algorithms are presented and evaluated. It is shown how to use available information to make better predictions of the future states of the chain and increase the efficiency of prefetching considerably. The optimal acceptance rate for the prefetching random walk Metropolis–Hastings algorithm is obtained for a special case and it is shown to decrease in the number of processors employed. The performance of the algorithms is illustrated using a well-known macroeconomic model. Bayesian estimation of DSGE models, linearly or nonlinearly approximated, is identified as a potential area of application for prefetching methods. The generality of the proposed method, however, suggests that it could be applied in other contexts as well.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 54, Issue 11, 1 November 2010, Pages 2814–2835
نویسندگان
,