کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
417762 681565 2010 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Non-linear time series clustering based on non-parametric forecast densities
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Non-linear time series clustering based on non-parametric forecast densities
چکیده انگلیسی

The problem of clustering time series is studied for a general class of non-parametric autoregressive models. The dissimilarity between two time series is based on comparing their full forecast densities at a given horizon. In particular, two functional distances are considered: L1 and L2. As the forecast densities are unknown, they are approximated using a bootstrap procedure that mimics the underlying generating processes without assuming any parametric model for the true autoregressive structure of the series. The estimated forecast densities are then used to construct the dissimilarity matrix and hence to perform clustering. Asymptotic properties of the proposed method are provided and an extensive simulation study is carried out. The results show the good behavior of the procedure for a wide variety of nonlinear autoregressive models and its robustness to non-Gaussian innovations. Finally, the proposed methodology is applied to a real dataset involving economic time series.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 54, Issue 11, 1 November 2010, Pages 2850–2865
نویسندگان
, , ,