کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
417771 681575 2010 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
James–Stein shrinkage to improve k-means cluster analysis
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
James–Stein shrinkage to improve k-means cluster analysis
چکیده انگلیسی

We study a general algorithm to improve the accuracy in cluster analysis that employs the James–Stein shrinkage effect in k-means clustering. We shrink the centroids of clusters toward the overall mean of all data using a James–Stein-type adjustment, and then the James–Stein shrinkage estimators act as the new centroids in the next clustering iteration until convergence. We compare the shrinkage results to the traditional k-means method. A Monte Carlo simulation shows that the magnitude of the improvement depends on the within-cluster variance and especially on the effective dimension of the covariance matrix. Using the Rand index, we demonstrate that accuracy increases significantly in simulated data and in a real data example.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 54, Issue 9, 1 September 2010, Pages 2113–2127
نویسندگان
, ,