کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
417836 681586 2009 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multivariate exponential survival trees and their application to tooth prognosis
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Multivariate exponential survival trees and their application to tooth prognosis
چکیده انگلیسی

This paper is concerned with developing rules for assignment of tooth prognosis based on actual tooth loss in the VA Dental Longitudinal Study. It is also of interest to rank the relative importance of various clinical factors for tooth loss. A multivariate survival tree procedure is proposed. The procedure is built on a parametric exponential frailty model, which leads to greater computational efficiency. We adopted the goodness-of-split pruning algorithm of [LeBlanc, M., Crowley, J., 1993. Survival trees by goodness of split. Journal of the American Statistical Association 88, 457–467] to determine the best tree size. In addition, the variable importance method is extended to trees grown by goodness-of-fit using an algorithm similar to the random forest procedure in [Breiman, L., 2001. Random forests. Machine Learning 45, 5–32]. Simulation studies for assessing the proposed tree and variable importance methods are presented. To limit the final number of meaningful prognostic groups, an amalgamation algorithm is employed to merge terminal nodes that are homogeneous in tooth survival. The resulting prognosis rules and variable importance rankings seem to offer simple yet clear and insightful interpretations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 53, Issue 4, 15 February 2009, Pages 1110–1121
نویسندگان
, , ,