کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
417852 | 681586 | 2009 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Shrinkage and model selection with correlated variables via weighted fusion
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we propose the weighted fusion, a new penalized regression and variable selection method for data with correlated variables. The weighted fusion can potentially incorporate information redundancy among correlated variables for estimation and variable selection. Weighted fusion is also useful when the number of predictors pp is larger than the number of observations nn. It allows the selection of more than nn variables in a motivated way. Real data and simulation examples show that weighted fusion can improve variable selection and prediction accuracy.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 53, Issue 4, 15 February 2009, Pages 1284–1298
Journal: Computational Statistics & Data Analysis - Volume 53, Issue 4, 15 February 2009, Pages 1284–1298
نویسندگان
Z. John Daye, X. Jessie Jeng,