کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
417857 681586 2009 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Estimation in the probit normal model for binary outcomes using the SAEM algorithm
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Estimation in the probit normal model for binary outcomes using the SAEM algorithm
چکیده انگلیسی

Generalized linear mixed models (GLMM) form a very general class of random effects models for discrete and continuous responses in the exponential family. They are useful in a variety of applications. The traditional likelihood approach for GLMM usually involves high dimensional integrations which are computationally intensive. In this work, we investigate the case of binary outcomes analyzed under a two stage probit normal model with random effects. First, it is shown how ML estimates of the fixed effects and variance components can be computed using a stochastic approximation of the EM algorithm (SAEM). The SAEM algorithm can be applied directly, or in conjunction with a parameter expansion version of EM to speed up the convergence. A procedure is also proposed to obtain REML estimates of variance components and REML-based estimates of fixed effects. Finally an application to a real data set involving a clinical trial is presented, in which these techniques are compared to other procedures (penalized quasi-likelihood, maximum likelihood, Bayesian inference) already available in classical softwares (SAS Glimmix, SAS Nlmixed, WinBUGS), as well as to a Monte Carlo EM (MCEM) algorithm.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 53, Issue 4, 15 February 2009, Pages 1350–1360
نویسندگان
, , ,