کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
417868 681586 2009 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Improving malware detection by applying multi-inducer ensemble
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Improving malware detection by applying multi-inducer ensemble
چکیده انگلیسی

Detection of malicious software (malware) using machine learning methods has been explored extensively to enable fast detection of new released malware. The performance of these classifiers depends on the induction algorithms being used. In order to benefit from multiple different classifiers, and exploit their strengths we suggest using an ensemble method that will combine the results of the individual classifiers into one final result to achieve overall higher detection accuracy. In this paper we evaluate several combining methods using five different base inducers (C4.5 Decision Tree, Naïve Bayes, KNN, VFI and OneR) on five malware datasets. The main goal is to find the best combining method for the task of detecting malicious files in terms of accuracy, AUC and Execution time.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 53, Issue 4, 15 February 2009, Pages 1483–1494
نویسندگان
, , , ,