کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
417956 | 681595 | 2008 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Semisupervised learning from dissimilarity data
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The following two-stage approach to learning from dissimilarity data is described: (1) embed both labeled and unlabeled objects in a Euclidean space; then (2) train a classifier on the labeled objects. The use of linear discriminant analysis for (2), which naturally invites the use of classical multidimensional scaling for (1), is emphasized. The choice of the dimension of the Euclidean space in (1) is a model selection problem; too few or too many dimensions can degrade classifier performance. The question of how the inclusion of unlabeled objects in (1) affects classifier performance is investigated. In the case of spherical covariances, including unlabeled objects in (1) is demonstrably superior. Several examples are presented.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 52, Issue 10, 15 June 2008, Pages 4643–4657
Journal: Computational Statistics & Data Analysis - Volume 52, Issue 10, 15 June 2008, Pages 4643–4657
نویسندگان
Michael W. Trosset, Carey E. Priebe, Youngser Park, Michael I. Miller,