کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
417958 681595 2008 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A maximum likelihood method for an asymmetric MDS model
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
A maximum likelihood method for an asymmetric MDS model
چکیده انگلیسی

A maximum likelihood estimation method is proposed to fit an asymmetric multidimensional scaling model to a set of asymmetric data. This method is based on successive categories scaling, and enables us to analyze asymmetric proximity data measured, at least, at an ordinal scale level. It enables us to examine not only the appropriate scaling level of the data, but also the appropriate dimensionality of the model, using AIC. Prior to or in fitting the asymmetric MDS model, it is important to verify that the data are sufficiently asymmetric. Some variants of symmetry hypotheses are developed for this purpose. Since the emphasis in our paper is not on hypothesis testing, but on model diagnosis, we compare several candidate models including models with these hypotheses based on a similar model comparison idea using AIC. The method is applied to artificial data and a set of friendship data among nations in East Asia and the USA. Relations to other methods are also discussed.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 52, Issue 10, 15 June 2008, Pages 4673–4684
نویسندگان
, ,