کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
418007 681600 2008 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Feature significance for multivariate kernel density estimation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Feature significance for multivariate kernel density estimation
چکیده انگلیسی

Multivariate kernel density estimation provides information about structure in data. Feature significance is a technique for deciding whether features–such as local extrema–are statistically significant. This paper proposes a framework for feature significance in dd-dimensional data which combines kernel density derivative estimators and hypothesis tests for modal regions. For the gradient and curvature estimators distributional properties are given, and pointwise test statistics are derived. The hypothesis tests extend the two-dimensional feature significance ideas of Godtliebsen et al. [Godtliebsen, F., Marron, J.S., Chaudhuri, P., 2002. Significance in scale space for bivariate density estimation. Journal of Computational and Graphical Statistics 11, 1–21]. The theoretical framework is complemented by novel visualization for three-dimensional data. Applications to real data sets show that tests based on the kernel curvature estimators perform well in identifying modal regions. These results can be enhanced by corresponding tests with kernel gradient estimators.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 52, Issue 9, 15 May 2008, Pages 4225–4242
نویسندگان
, , , ,