کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
418024 | 681600 | 2008 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Assessing influence in Gaussian long-memory models
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A statistical methodology for detecting influential observations in long-memory models is proposed. The identification of these influential points is carried out by case-deletion techniques. In particular, a Kullback–Leibler divergence is considered to measure the effect of a subset of observations on predictors and smoothers. These techniques are illustrated with an analysis of the River Nile data where the proposed methods are compared to other well-known approaches such as the Cook and the Mahalanobis distances.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 52, Issue 9, 15 May 2008, Pages 4487–4501
Journal: Computational Statistics & Data Analysis - Volume 52, Issue 9, 15 May 2008, Pages 4487–4501
نویسندگان
Wilfredo Palma, Pascal Bondon, José Tapia,