کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
418164 681615 2007 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Generalized likelihood ratio test for varying-coefficient models with different smoothing variables
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Generalized likelihood ratio test for varying-coefficient models with different smoothing variables
چکیده انگلیسی

Varying-coefficient models are popular multivariate nonparametric fitting techniques. When all coefficient functions in a varying-coefficient model share the same smoothing variable, inference tools available include the F-test, the sieve empirical likelihood ratio test and the generalized likelihood ratio (GLR) test. However, when the coefficient functions have different smoothing variables, these tools cannot be used directly to make inferences on the model because of the differences in the process of estimating the functions. In this paper, the GLR test is extended to models of the latter case by the efficient estimators of these coefficient functions. Under the null hypothesis the new proposed GLR test follows the χ2χ2-distribution asymptotically with scale constant and degree of freedom independent of the nuisance parameters, known as Wilks phenomenon. Further, we have derived its asymptotic power which is shown to achieve the optimal rate of convergence for nonparametric hypothesis testing. A simulation study is conducted to evaluate the test procedure empirically.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 51, Issue 9, 15 May 2007, Pages 4543–4561
نویسندگان
, , ,