کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
418231 681620 2007 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bootstrap prediction intervals for autoregressive time series
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Bootstrap prediction intervals for autoregressive time series
چکیده انگلیسی

The calculation of interval forecasts for highly persistent autoregressive (AR) time series based on the bootstrap is considered. Three methods are considered for countering the small-sample bias of least-squares estimation for processes which have roots close to the unit circle: a bootstrap bias-corrected OLS estimator; the use of the Roy–Fuller estimator in place of OLS; and the use of the Andrews–Chen estimator in place of OLS. All three methods of bias correction yield superior results to the bootstrap in the absence of bias correction. Of the three correction methods, the bootstrap prediction intervals based on the Roy–Fuller estimator are generally superior to the other two. The small-sample performance of bootstrap prediction intervals based on the Roy–Fuller estimator are investigated when the order of the AR model is unknown, and has to be determined using an information criterion.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 51, Issue 7, 1 April 2007, Pages 3580–3594
نویسندگان
, ,