کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
418233 681620 2007 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Forecast comparison of principal component regression and principal covariate regression
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Forecast comparison of principal component regression and principal covariate regression
چکیده انگلیسی

Forecasting with many predictors is of interest, for instance, in macroeconomics and finance. The forecast accuracy of two methods for dealing with many predictors is compared, that is, principal component regression (PCR) and principal covariate regression (PCovR). Simulation experiments with data generated by factor models and regression models indicate that, in general, PCR performs better for the first type of data and PCovR performs better for the second type of data. An empirical application to four key US macroeconomic variables shows that PCovR achieves improved forecast accuracy in some situations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 51, Issue 7, 1 April 2007, Pages 3612–3625
نویسندگان
, , ,