کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
418252 681626 2007 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Comparison of PQL and Laplace 6 estimates of hierarchical linear models when comparing groups of small incident rates in cluster randomised trials
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Comparison of PQL and Laplace 6 estimates of hierarchical linear models when comparing groups of small incident rates in cluster randomised trials
چکیده انگلیسی

The variances of the random components in hierarchical generalised linear models (HGLMs) with binary outcomes have been reported to have a considerable downward bias when estimated with the commonly used penalised quasilikelihood (PQL) technique. The more recently proposed Laplace 6 approximation promises to reduce this bias. This study compares the performance of these two techniques when estimating the parameters of a particular HGLM. This comparison is performed via Monte Carlo simulations in which the difference between two groups of proportions, modelled after those appearing in many epidemiological cluster randomised interventions, are tested using this model. The Laplace 6 approximation does reduce the bias mentioned above, but at the price of a higher mean square error. The results of this study suggest that the optimal solution involves using a combination of these two techniques. This combination is illustrated by analysing a data set from a real cluster randomised intervention.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 51, Issue 6, 1 March 2007, Pages 2871–2888
نویسندگان
,