کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
418273 681626 2007 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Comparison of feature selection and classification algorithms in identifying malicious executables
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Comparison of feature selection and classification algorithms in identifying malicious executables
چکیده انگلیسی

Malicious executables, often spread as email attachments, impose serious security threats to computer systems and associated networks. We investigated the use of byte sequence frequencies as a way to automatically distinguish malicious from benign executables without actually executing them. In a series of experiments, we compared classification accuracies over seven feature selection methods, four classification algorithms, and variable byte sequence lengths. We found that single-byte patterns provided surprisingly reliable features to separate malicious executables from benign. Between classifiers and feature selection methods, the overall performance of the models depended more on the choice of classifier than the method of feature selection. Support vector machine (SVM) classifiers were found to be superior in terms of prediction accuracy, training time, and aversion to overfitting.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 51, Issue 6, 1 March 2007, Pages 3156–3172
نویسندگان
, , ,