کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
418766 681718 2014 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
List backbone colouring of graphs
ترجمه فارسی عنوان
ستون فقرات را رنگ آمیزی نمودار ها را فهرست کنید
کلمات کلیدی
رنگ آمیزی لیست ستون فقرات، مشکل تخصیص کانال شماره انتخاب
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
چکیده انگلیسی

Suppose that GG is a graph and that HH is a subgraph of GG. Let LL be a mapping that assigns to each vertex vv of GG a set L(v)L(v) of positive integers. We say that (G,H)(G,H) is backboneLL-colourable if there is a proper vertex colouring cc of GG such that c(v)∈L(v)c(v)∈L(v) for all v∈Vv∈V, and |c(u)−c(v)|⩾2|c(u)−c(v)|⩾2 for every edge uvuv in HH. We say that (G,H)(G,H) is backbone kk-choosable if (G,H)(G,H) is backbone LL-colourable for any list assignment LL with |L(v)|=k|L(v)|=k for all v∈V(G)v∈V(G). The backbone choice number of (G,H)(G,H), denoted by chBB(G,H), is the minimum kk such that (G,H)(G,H) is backbone kk-choosable. The concept of a backbone choice number is a generalization of both the choice number and the L(2,1)L(2,1)-choice number. Precisely, if E(H)=0̸E(H)=0̸, then chBB(G,H)=ch(G), where ch(G) is the choice number of GG; if G=H2G=H2, then chBB(G,H) is the same as the L(2,1)L(2,1)-choice number of HH. In this article, we first show that, if |L(v)|=dG(v)+2dH(v)|L(v)|=dG(v)+2dH(v), then (G,H)(G,H) is LL-colourable, unless E(H)=0̸E(H)=0̸ and each block of GG is a complete graph or an odd cycle. This generalizes a result of Erdős, Rubin, and Taylor on degree-choosable graphs. Second, we prove that chBB(G,H)⩽max{⌊mad(G)⌋+1,⌊mad(G)+2mad(H)⌋}, where mad(G) is the maximum average degree of a graph GG. Finally, we establish various upper bounds on chBB(G,H) in terms of ch(G). In particular, we prove that, for a kk-choosable graph GG, chBB(G,H)⩽3k if every component of HH is unicyclic; chBB(G,H)⩽2k if HH is a matching; and chBB(G,H)⩽2k+1 if HH is a disjoint union of paths with length at most 2.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Applied Mathematics - Volume 167, 20 April 2014, Pages 45–51
نویسندگان
, , , ,