کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
418814 681720 2009 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Enumeration aspects of maximal cliques and bicliques
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Enumeration aspects of maximal cliques and bicliques
چکیده انگلیسی

We present a general framework to study enumeration algorithms for maximal cliques and maximal bicliques of a graph. Given a graph GG, we introduce the notion of the transition graph T(G)T(G) whose vertices are maximal cliques of GG and arcs are transitions between cliques. We show that T(G)T(G) is a strongly connected graph and characterize a rooted cover tree of T(G)T(G) which appears implicitly in [D.S. Johnson, M. Yannakakis, C.H. Papadimitriou, On generating all maximal independent sets, Information Processing Letters 27 (1988) 119–123; S. Tsukiyama, M. Ide, M. Aiyoshi, I. Shirawaka, A new algorithm for generating all the independent sets, SIAM Journal on Computing 6 (1977) 505–517]. When GG is a bipartite graph, we show that the Galois lattice of GG is a partial graph of T(G)T(G) and we deduce that algorithms based on the Galois lattice are a particular search of T(G)T(G). Moreover, we show that algorithms in [G. Alexe, S. Alexe, Y. Crama, S. Foldes, P.L. Hammer, B. Simeone, Consensus algorithms for the generation of all maximal bicliques, Discrete Applied Mathematics 145 (1) (2004) 11–21; L. Nourine, O. Raynaud, A fast algorithm for building lattices, Information Processing Letters 71 (1999) 199–204] generate maximal bicliques of a bipartite graph in O(n2)O(n2) per maximal biclique, where nn is the number of vertices in GG. Finally, we show that under some specific numbering, the transition graph T(G)T(G) has a hamiltonian path for chordal and comparability graphs.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Applied Mathematics - Volume 157, Issue 7, 6 April 2009, Pages 1447–1459
نویسندگان
, , ,