کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
418825 681720 2009 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The upper connected geodetic number and forcing connected geodetic number of a graph
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
The upper connected geodetic number and forcing connected geodetic number of a graph
چکیده انگلیسی

For a connected graph GG of order p≥2p≥2, a set S⊆V(G)S⊆V(G) is a geodetic set of GG if each vertex v∈V(G)v∈V(G) lies on an x–yx–y geodesic for some elements xx and yy in SS. The minimum cardinality of a geodetic set of GG is defined as the geodetic number of GG, denoted by g(G)g(G). A geodetic set of cardinality g(G)g(G) is called a gg-set of GG. A connected geodetic set of GG is a geodetic set SS such that the subgraph G[S]G[S] induced by SS is connected. The minimum cardinality of a connected geodetic set of GG is the connected geodetic number of GG and is denoted by gc(G)gc(G). A connected geodetic set of cardinality gc(G)gc(G) is called a gcgc-set of GG. A connected geodetic set SS in a connected graph GG is called a minimal connected geodetic set if no proper subset of SS is a connected geodetic set of GG. The upper connected geodetic number gc+(G) is the maximum cardinality of a minimal connected geodetic set of GG. We determine bounds for gc+(G) and determine the same for some special classes of graphs. For positive integers r,dr,d and n≥d+1n≥d+1 with r≤d≤2rr≤d≤2r, there exists a connected graph GG with radG=r, diamG=d and gc+(G)=n. Also, for any positive integers 2≤a

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Applied Mathematics - Volume 157, Issue 7, 6 April 2009, Pages 1571–1580
نویسندگان
, , ,