کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
418989 681731 2015 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The property of edge-disjoint Hamiltonian cycles in transposition networks and hypercube-like networks
ترجمه فارسی عنوان
اموال چرخه هامیلتونی بدون لبه در شبکه های حمل و نقل و شبکه های پراکسی مانند
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
چکیده انگلیسی

The presence of edge-disjoint Hamiltonian cycles provides an advantage when implementing algorithms that require a ring structure by allowing message traffic to be spread evenly across the network. Edge-disjoint Hamiltonian cycles also provide the edge-fault tolerant hamiltonicity of an interconnection network. In this paper, we first study the property of edge-disjoint Hamiltonian cycles in transposition networks which form a subclass of Cayley graphs. The transposition networks include other famous network topologies as their subgraphs, such as meshes, hypercubes, star graphs, and bubble-sort graphs. We first give a novel decomposition of transposition networks. Using the proposed decomposition, we show that nn-dimensional transposition network with n⩾5n⩾5 contains four edge-disjoint Hamiltonian cycles. By using the similar approach, we present a linear time algorithm to construct two edge-disjoint Hamiltonian cycles on crossed cubes which is a variation of hypercubes. The proposed approach can be easily applied to construct two edge-disjoint Hamiltonian cycles on the other variations of hypercubes.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Applied Mathematics - Volume 181, 30 January 2015, Pages 109–122
نویسندگان
,