کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
419258 | 683763 | 2016 | 9 صفحه PDF | دانلود رایگان |
A set WW of vertices of a connected graph GG strongly resolves two different vertices x,y∉Wx,y∉W if either dG(x,W)=dG(x,y)+dG(y,W)dG(x,W)=dG(x,y)+dG(y,W) or dG(y,W)=dG(y,x)+dG(x,W)dG(y,W)=dG(y,x)+dG(x,W), where dG(x,W)=min{dG(x,w):w∈W} and dG(x,w)dG(x,w) is the length of a shortest x−wx−w path. An ordered vertex partition Π={U1,U2,…,Uk}Π={U1,U2,…,Uk} of GG is a strong resolving partition for GG, if every two different vertices belonging to the same set of the partition are strongly resolved by some set of ΠΠ. The minimum cardinality of a strong resolving partition for GG is the strong partition dimension of GG. In this article we study the strong resolving partitions and the strong partition dimension of strong product graphs and Cartesian product graphs.
Journal: Discrete Applied Mathematics - Volume 202, 31 March 2016, Pages 70–78