کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
419558 683840 2010 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Finding large cycles in Hamiltonian graphs
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Finding large cycles in Hamiltonian graphs
چکیده انگلیسی

We show how to find in Hamiltonian graphs a cycle of length nΩ(1/loglogn)=exp(Ω(logn/loglogn))nΩ(1/loglogn)=exp(Ω(logn/loglogn)). This is a consequence of a more general result in which we show that if GG has a maximum degree dd and has a cycle with kk vertices (or a 3-cyclable minor HH with kk vertices), then we can find in O(n3)O(n3) time a cycle in GG of length kΩ(1/logd)kΩ(1/logd). From this we infer that if GG has a cycle of length kk, then one can find in O(n3)O(n3) time a cycle of length kΩ(1/(log(n/k)+loglogn))kΩ(1/(log(n/k)+loglogn)), which implies the result for Hamiltonian graphs. Our results improve, for some values of kk and dd, a recent result of Gabow (2004) [11] showing that if GG has a cycle of length kk, then one can find in polynomial time a cycle in GG of length exp(Ω(logk/loglogk)). We finally show that if GG has fixed Euler genus gg and has a cycle with kk vertices (or a 3-cyclable minor HH with kk vertices), then we can find in polynomial time a cycle in GG of length f(g)kΩ(1)f(g)kΩ(1), running in time O(n2)O(n2) for planar graphs.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Applied Mathematics - Volume 158, Issue 8, 28 April 2010, Pages 882–893
نویسندگان
, ,